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• Small residual is easy to obtain, but does not 
necessarily imply computed solution is accurate

• small relative residual implies small relative error 
in approximate solution only if A is well-
conditioned
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Case 1:
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Case 2:



• For well-conditioned A, large relative residual 
implies large backward error in matrix, and 
algorithm used to compute solution is unstable.

• For ill-conditioned A, large relative residual does 
not necessary imply the relative error is also large.
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Solve linear system by iterations
Direct Solver: Gauss Elimination based on LU decomposition:

Observation (1)



Observation (2):



Question (1)

Can one decompose a matrix A into the product of 
a lower triangular matrix L and a upper triangular 
matrix U?

Question (2)

Suppose we can, what would be the algorithm to find L 
and U?

Question (3)

Is the algorithm in question (2) stable?



Existence of LU-Decomposition

LU decomposition exists when all leading
principal minors of the n x n matrix A are 
nonsingular.

i.e.

This is difficult to check in real computation.
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Every strictly diagonally dominant matrix is
nonsingular and has an LU-factorization.
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 and  are diagnoally dominant then, by assumption of induction, 
we have 
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Hence,  is strictly diagnoally dominant.
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Remark:

• If A is irreducibly, diagonally dominant with strictly 
inequality holds for at least one row, then A is non-
singular and has a LU factorization.

(assuming the strict dominant inequality. holds at first 
row [ α, ωT ], clearly, the above argument still holds.)

• LU factorization is good for multiple right hand sides.



• LU uniqueness:



LU Algorithm
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Computation cost



( )3  computational cost is too expensive.O n

Possible halt when  or 0,  pivoting strategy 
is needed.
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The solution is unreliable with 
about 100% relative error

Remark:

•

•



Pivoting strategy: largest entries should be ordered first
    . Consider
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Example:
(Hydraulic network) Let us consider the 
hydraulic network shown in the right figure, 
which is fed by a reservoir of water at 
constant pressure pr = 10 bar. In this 
problem, pressure values refer to the 
difference between the real pressure a the 
atmospheric one. 
For the j-th pipeline, the following relationship holds between the flow-
rate Qj  and the pressure gap Δpj at pipe-ends: Qj = kLΔpj , where k 
is the hydraulic resistance and L is the length of the pipeline. We 
assume that water flows from the outlets at atmospheric pressure, 
which is set to 0 bar. What is the pressure values at each internal node 
1, 2, 3, 4 ?
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Rank one updating
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Sherman-Morrison-Woodbury Formula
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where U and V are  matrices, . 
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Rank m update

Exercise:



Possible fill-in in LU might 
give high storage cost :
Node reordering algorithm
can improve !!! A classical 
algorithm is the Cuthill 
Mckee reordering

7550 non-zero elements 30366 non-zero elements



Breadth First Search







Reverse Cuthill Mckee : reverse the Cuthill-Mckee order 

Cuthill-Mckee

Reverse order



After reverse Cuthill_Mckee 24059 nonzero in LU

There are other reordering algorithm 
available such as column count and 
minimal degree reordering, etc. 
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