— 1/p
zllp = (Z-*‘Hp)
i=1

Linear System

(—1.6,1.2)
\

—2.0

Important special cases

@ 1-norm:
@ 2-norm:

@ oC-Norm.

I

I

1.11

L = e
o 1/2
> = (30, |z)?)

o — Ak |Ii|

N

2.0

Matrix norm corresponding to given vector norm is defined
by

|Al| = maxz+o

Condition number of square nonsingular matrix A is
defined by

cond(A) = || A[| -] A7

20 |lz]) \a%0 []

) —1
JAJ -l A7 = (mw) | (min M)

condition number measures ratio of maximum stretching to
maximum shrinking matrix does to any nonzero vectors

Case 1.

et x be the solution of Ax=b and X be the solution of
AX=b+ADb, the error Ax = x — X and the residual

r=b—AX=A(x—-X):
we have ||Ax| < HA‘lHHrHtogether with b = Ax

= |b|| <||Al|[[||, the inequality *—* < cond (A);—:

Small residual is easy to obtain, but does not
necessarily imply computed solution is accurate

small relative residual implies small relative error
In approximate solution only if A is well-
conditioned

Case 2:

Let X be the solution of (A+E)X=b, the error Ax = x— X and
the residual r =b— AX = A(Xx—X):

@ Similar result holds for relative change in matrix: if
(A+ E)x = b, then

1Az _
N

1]l

DIl{lL4J||4||

@ If input data are accurate\ to machine precision, then bound
for relative error in solution = becomes

< CDﬂd(AJ €mach

= A = |A(x-)] < Al]

LIRCTEIL B

-1 —
T
« For well-conditioned A, large relative residual
Implies large backward error in matrix, and
algorithm used to compute solution is unstable.

 For Ill-conditioned A, large relative residual does
not necessary imply the relative error is also large.

2 =b - AR =1 = |r] <[] || <[A+)

N % < HEHH Al + A‘lE))_l <

lr+ AlE)1H

<|E[|A H HA EH when |A“E| <<1 (see Lemma 1 at p.30)
z%cond(A)

One can estimate the backward error is about

R

Solve linear system by iterations

Direct Solver: Gauss Elimination based on LU decomposition:

Observation (1)

@ Forward-substitution for lower triangular system Lz = b

for j =1ton { loop over columns }
if 7;; = 0 then stop { stop if matrix is singular }
3 = bifl;y { compute solution component }
fori=j+1ton
by = by — Ui { update right-hand side }
end

end

Observation (2):

@ Back-substitution for upper triangular system Ux = b

T
Tn =bn/tnn, xi=|bi— Z wigry | [ui, i=mn-—1,...,1
j=it1
for j =ntol { loop backwards over columns }
if u;; = 0 then stop { stop if matrix is singular }
T = by fuy { compute solution component }
fori=1toj -1
bi = b; — wijx; { update right-hand side }
end

end

Question (1)

Can one decompose a matrix A into the product of
a lower triangular matrix L and a upper triangular
matrix U?

Question (2)

Suppose we can, what would be the algorithm to find L
and U?

Question (3)

Is the algorithm in question (2) stable?

Existence of LU-Decomposition

LU decomposition exists when all leading
principal minors of the n x n matrix A are
nonsingular.

l.e.

AR _

(dy

\akl

Ay \

Ay)

k=1~ n.

This Is difficult to check in real computation.

Every strictly diagonally dominant matrix is
nonsingular and has an LU-factorization.

Strictly diagonal-dominant matrix |a;|> Z‘aij‘, for all |

J#i

Proof: Consider

(1 0|1 0 T
a o
= A=|yp VW' { }
a

o COT
T
0 c-22_

(24

.
Y s diagonally dominant, when

If one can show B=C —
a

A and C are diagnoally dominant then, by assumption of induction,

we have B = LU

1 0)
= A= -E-U-{ } — By math induction,
a

2
C<

n-1 n-1 vo. | 0t
Z\%FZ%- — SZ‘CU’ T
j=1 j=1 2 j=1 j=!
i | i 1] I
<|cn|—|u.|+§<zww\ o <[-1
<|05|
=G 2 :|bii|’
a

Hence, B is strictly diagnoally dominant.

Remark:

« If Alis irreducibly, diagonally dominant with strictly
Inequality holds for at least one row, then A is non-
singular and has a LU factorization.

(assuming the strict dominant inequality. holds at first
row [a, '], clearly, the above argument still holds.)

« LU factorization is good for multiple right hand sides.

e LU uniqueness:

@ Despite variations in computing it, LU factorization is
unique up to diagonal scaling of factors

@ Provided row pivot sequence is same, if we have two LU
factorizations PA = LU = LU, then L™'L =UU ' =D
Is both lower and upper triangular, hence diagonal

@ Ifboth L and L are unit lower triangular, then D must be
identity matrix, so L = Land U = U

@ Uniqueness is made explicit in LDU factorization
PA = LDU, with L unit lower triangular, U unit upper
triangular, and D diagonal

LU Algorithm

Fork =1 : n,
CacUe = ngm mk
Forj = k+1.

k -1
ukj :(akj _ngm mj)/gkk

2k-1 operations

end.
Fori = k+1 : n
ik — (a'lk _Z flm mj)/ukk
(k 1)+ (k- 2)+1+1 2k-1
operatlons
end

end

Computation cost
Z(Zn:(n —k)-(2k -1)) +

ZH:Z(k ~1) = 0(n®)

Remark:

O(n®) computational cost is too expensive.

Possible halt when |, oru, =0, pivoting strategy

IS needed.

Consider A=

L-U =

1
1
&

1

&
1

0]

1

|

=[

g 1

1

g 1

1 |=L-U. When overflow,

0 1-—
&

O} = A, one has |E|= HA— AH =0(1),

according to the backward error estimation

1ax]

X

ol lEl
A

j o(1)

The solution is unreliable with
about 100% relative error

1 ~0 1
exercise: check the estimate by solving AX{O} and Ax:{o},
and computing the error.

Pivoting strategy: largest entries should be ordered first
Ax=b = PAx=Pb = A x=Db . Consider

A 0 1][e 1] [1 1] [1 o1 1
" |1 0|1 1| |e 1| |e 1]|0 1-¢]

P A
Even when underflow occurs in evaluating 1-¢,

. 1 01 11 1 17 A
A, = = :>HAp—Ap
K 1__0 1_ K 1+g_

So, the solution from the pivoted system is reliable.

J/

=0(¢).

Example:

(Hydraulic network) Let us consider the
hydraulic network shown in the right figure,
which is fed by a reservoir of water at
constant pressure pr = 10 bar. In this
problem, pressure values refer to the
difference between the real pressure a the .
atmosph eric one. Fig. 5.1. The pipeline network of Problem 5.1

For the j-th pipeline, the following relationship holds between the flow-
rate Q] and the pressure gap Apj at pipe-ends: Q] = kL Apj , where k
IS the hydraulic resistance and L is the length of the pipeline. We
assume that water flows from the outlets at atmospheric pressure,
which is set to 0 bar. What is the pressure values at each internal node
1,2,3,47

pipeline B L pipeline L pipeline B L
j 0.01 20 9 0.005 10 3 0.005 14
| () ()5 L) 5 005 1() [y L) U -
7 0.002 8 S 0.002 8 0 0.005 10

1 () L) UL -

Q2+Q3+Q4

Qy +Qy

Qy +Qs+ Qs
:Q4

Qs +Qs

:Q2

=Q,

Answer

0.005><1O><(P2 — F’l)+0.005><14><(P4 — I:’1)+O.005><1O><(P3 — Pl) =

0.01x20x (R —10)

—0.37P, +0.05P, +0.05P, + 0.07P, = -2

0.050

0.070 |

0 —0.116

>
:Q7+Q8
0.370 0.050
0.050 —0.116
0.050
0.070 0.050

U

0.(
0.(

)
)
)!

50
H0)

0.050 —0.202

{
|

b=

kZLZ(PZ_Pl)+k3|—3(P4_Pl)+k4L4(P3_Pl):lel(Pl_lo)

Rank one updating

Sherman-Morrison Formula

@ Sometimes refactorization can be avoided even when
matrix does change

@ Sherman-Morrison formula gives inverse of matrix
resulting from rank-one change to matrix whose inverse is
already known

(A — u-t:T)_l —A '+ A w1l — vl A) el AT
where uw and v are n-vectors

@ Evaluation of formula requires O(n?) work (for
matrix-vector multiplications) rather than O(»?) work
required for inversion

@ To solve linear system (A — uv!)z = b with new matrix,
use Sherman-Morrison formula to obtain

r = (A—uv!)7'b
= A%+ A w1l —vl A7)l AT

which can be implemented by following steps
@ Solve Az =uforz, soz=A"1u
@ Solve Ay =bfory,soy= A"'b
o Compute z =y + ((vTy)/(1—-vlz))z

@ If A is already factored, procedure requires only triangular
solutions and inner products, so only ©(n?) work and no
explicit inverses

Rank m update
Sherman-Morrison-Woodbury Formula
(A+UVT) = AT AU (1+VTAU) VAT

where U and V are nx m matrices, n >> m.

Exercise:
(4 -1 -1 -1][x,] [1]
: _ -1 1 0 0} x, 1
Use the LU algorithm to solve the equation =
-1 0 1 0} X%, 1
-1 0 0 1]/x,] |1
(4 -1 0 -1|[x, | [O]
: _ -1 4 -1 0}x, 1
Use rank one updating to solve the equation =
0 -1 4 -1||x, 1
-1 0 -1 4] x,| |0

Possible fill-in in LU might
give high storage cost :

Node reordering algorithm

can improve !!l A classical
algorithm is the Cuthill
Mckee reordering

A Sparse Symmetric Matrix

0
sof "o ¢
oo T _
wb UL e T
150 | i R
Twon '._-:: '.'ll’
200} L, i
e T & " ILJ__R_
250} -7k Maas 0 -
< RN
) ML
300} o Ry
- R k.
T A
- o~ ’ \L_"-:‘J 'E“'l
FE0 + -—— - W 2
o s TR B
l‘il:“j- —.'.I' - . =_| W om ..._
i A .
s = _f_] }
450t :] -
H __ i i
[T [N o, ‘m
100 200 300 400

nonzeros=r551 (3.291%)

7550 non-zero elements

Trivial Example:

» Difficulty in Gaussian elimination: Fill-in

[+ + + + + +)
+ +
A |t F
+ +
+ +
\+ +/
Cholesky decompasition of 3
0 . :
50 =
wop T
160+
-
200+ =
/0 T "5!1
300+ ::::.:.i
fEe—m= = el
350' i —EH—EHE——]
R
oy 5 an =il
-
450' — = i) [
=1 N | B || S
100 200 300 400

nonzeros=30366 (13.23%) time=0.02 sec

30366 non-zero elements

Breadth First Search

il B H I

. | . N

| | | /

| | | /

| | | /

| | | / BFS from node A:

| | I Level 0: A
Chk————————: x D |/ Level 1: B, C;

| Y | / Level 2: E, D, H;

| \ * K level 3: I, K, E, F, G, H

FoooA
-l-;——————f —————— e Algorithm BF S(G, v) — by level sets -
\\ /' « Initialize S = {v}, seen = 1; Mark v;
« H

¢ While seen < n Do

— Snew = 0;
—For each node v in S do
+ For each unmarked w in adj(v) do
-Add w to Syew;
- Mark w;
- 8een + +,
-5 = Spew

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level,

nodes are ordered by increasing degree

B
A

Example

D

Level | Nodes|Deg. |Order
0 A 2 A

1 B,C (4,3 |C,B

2 D.E,F|3,4.2 F,D,E
3 G 2 G

ALGORITHM : 1. Cuthill Mc Kee ordering

0. Find an intial node for the traversal
1. Initialize S = {v}, seen = 1, w(seen) = v; Mark v;
2. While seen < n Do
3. Snew = 0;
<, For each node v, going from lowest to highest degree, Do:
5. 7 (+ + seen) = v;
6. For each unmarked w in adj(v) do
7. Add w to S,,..;
8. Mark w;
9. EndDo
10. S := Snew
11. EndDo
12. EndWhile

Reverse Cuthill Mckee : reverse the Cuthill-Mckee order

U r =< - T T T T [P T T T T T T
11 M . f«+
L}., . - .

!1. L L - !-‘ .,
. . w P
1t L}-; o e E ot *i
Ll - - H
L ., ‘.
B O N _ _ |
Cuthill-Mckee”
. 2 1 £, 4 o
. - " L Ll & L
I+ » . L . LI g aok
P . . . P
- * . e s
SR e h S G ﬁ
- - Ll = L) -
] =3 * as ¥ L] . - ank
* . *
., ., .t
., -, ot
., ey *
. -
s el e CT. =0}
L] L] L]
¥ ¥ * s 3
. .
o, . 4
ar N . . N il o
3 3 C . % 3
e +
f P, g .|
i
L L L L L L Shnanpane

D 10 a0 0 40 =0 &0 Ta o

ne =377

Reverse order

Ll

&l

0
504 L
E] LI
ooE T
) omnra T
150+ - - oo
: 1
5 = |’_ |'_
200 - N _’,-'-';":c.l;,l'_
- = - _:-AJ R
250} o Eessi
300t T e T PI
L“:'-' N 'Ij “'*‘,:.
380} S nTE
Wows T D e
3 B Lo
400} B o
M PP
450t
100 200 300

After reverse Cuthill_Mckee

There are other reordering algorithm
available such as column count and
minimal degree reordering, etc.

Sip,p) after Cuthill-tekee ordering

nonzeros=7251 (3.291%)

chaol(S(p,pl) after Cuthill-Mclkee ardering

0
sofd
Heun F
oof oA
(1] R
- il | | |
200 - e || | B
), N
L EEE
250 - T i E
el |
300t ‘Eg! -=-|
- ——
bt ||
380 | 1
I'i —
am} —=l
i
450 - ———"
0 100 200 300 400
nonzeros=24059 (10.49%) time=0.01 sec
24059 nonzero in LU
Monzeros after Cholesky factorization
15 T

Percent

ariginal

0.03

Cuthil-Mckes column count min degree

Time to complete Cholesky factorization

Seconds

ariginal

Cuthil-Mckes column count min degree

	Solve linear system by iterations
	Existence of LU-Decomposition
	LU Algorithm
	Example:
	Answer
	Rank one updating
	Breadth First Search
	Reverse Cuthill Mckee : reverse the Cuthill-Mckee order

