Linear System

- 1-norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- 2-norm: $\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$
- ∞-norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

Matrix norm corresponding to given vector norm is defined by

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

Condition number of square nonsingular matrix A is defined by

$$
\operatorname{cond}(\boldsymbol{A})=\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|
$$

$$
\|A\| \cdot\left\|A^{-1}\right\|=\left(\max _{x \neq 0} \frac{\|A x\|}{\|x\|}\right) \cdot\left(\min _{x \neq 0} \frac{\|A x\|}{\|x\|}\right)^{-1}
$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

Case 1:

Let x be the solution of $A x=b$ and \hat{x} be the solution of $\mathrm{A} \hat{\mathrm{x}}=\mathrm{b}+\Delta \mathrm{b}$, the error $\Delta x=x-\hat{x}$ and the residual $r=b-A \hat{x}=A(x-\hat{x}):$
we have $\|\Delta x\| \leq\left\|A^{-1}\right\|\|r\|$ together with $b=A x$
$\Rightarrow\|b\| \leq\|A\|\|x\|$, the inequality $\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|r\|}{\|b\|}$

- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate
- small relative residual implies small relative error in approximate solution only if A is wellconditioned

Case 2:

Let \hat{x} be the solution of $(\mathrm{A}+\mathrm{E}) \hat{\mathrm{x}}=\mathrm{b}$, the error $\Delta x=x-\hat{x}$ and the residual $r=b-A \hat{x}=A(x-\hat{x})$:

- Similar result holds for relative change in matrix: if $(A+E) \hat{x}=b$, then

$$
\frac{\|\Delta x\|}{\|\hat{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|A\|}
$$

- If input data are accurate| to machine precision, then bound for relative error in solution x becomes

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \operatorname{cond}(\boldsymbol{A}) \epsilon_{\mathrm{mach}}
$$

$$
\begin{aligned}
& \|r\|=\|b-A \hat{x}\|=\|A(x-\hat{x})\| \leq\|A\|\|\Delta x\| \\
& \|x\| \leq\left\|A^{-1}\right\|\|b\| \\
& \frac{\|r\|}{\left\|A^{-1}\right\|\|b\|} \leq \frac{\|A\|\|\Delta x\|}{\|x\|} \Rightarrow \frac{\|r\|}{\|b\|} \leq \operatorname{cond}(A) \frac{\|\Delta x\|}{\|x\|}
\end{aligned}
$$

- For well-conditioned A, large relative residual implies large backward error in matrix, and algorithm used to compute solution is unstable.
- For ill-conditioned A, large relative residual does not necessary imply the relative error is also large.
$E \hat{X}=b-A \hat{x}=r \Rightarrow\|r\| \leq\|E\|\|\hat{x}\| \leq\|E\|\left\|(A+E)^{-1}\right\|\|b\|$
$\Rightarrow \frac{\|r\|}{\|b\|} \leq\|E\|\left\|\left(A\left(I+A^{-1} E\right)\right)^{-1}\right\| \leq\|E\|\left\|A^{-1}\right\|\left\|\left(I+A^{-1} E\right)^{-1}\right\|$
$<\|E\|\left\|A^{-1}\right\| \frac{1}{1-\left\|A^{-1} E\right\|}$ when $\left\|A^{-1} E\right\| \ll 1$ (see Lemma 1 at p.30)
$\approx \frac{\|E\|}{\|A\|} \operatorname{cond}(A)$
One can estimate the backward error is about

$$
\frac{\|\Delta x\|}{\|x\|} \approx O\left(\frac{\|E\|}{\|A\|}\right)
$$

Solve linear system by iterations

Direct Solver: Gauss Elimination based on LU decomposition:
Observation (1)

- Forward-substitution for lower triangular system $L \boldsymbol{x}=\boldsymbol{b}$

$$
x_{1}=b_{1} / \ell_{11}, \quad x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=2, \ldots, n
$$

```
for }j=1\mathrm{ to }
    if }\mp@subsup{\ell}{jj}{}=0\mathrm{ then stop
    x}=\mp@subsup{b}{j}{}/\mp@subsup{\ell}{jj}{
    for }i=j+1\mathrm{ to }
        b}=\mp@subsup{b}{i}{}-\mp@subsup{\ell}{ij}{}\mp@subsup{x}{j}{
    end
end
```

\{ loop over columns \}
\{ stop if matrix is singular \}
\{compute solution component \}
\{ update right-hand side \}

Observation (2):

- Back-substitution for upper triangular system $U \boldsymbol{X}=\boldsymbol{b}$

$$
\begin{aligned}
& \begin{array}{l}
x_{n}=b_{n} / u_{n n}, \quad x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n-1, \ldots, 1 \\
\text { for } j=n \text { to } 1 \\
\begin{array}{l}
\text { if } u_{j j}=0 \text { then stop } \\
x_{j}=b_{j} / u_{j j} \\
\text { for } i=1 \text { to } j-1
\end{array} \\
\quad \begin{array}{l}
\text { \{loop backwards over columns \} }
\end{array} \\
\quad \begin{array}{l}
\text { \{stop if matrix is singular \}}
\end{array} \\
\text { end } \\
\text { end }
\end{array}
\end{aligned}
$$

Question (1)
Can one decompose a matrix A into the product of a lower triangular matrix L and a upper triangular matrix U?

Question (2)
Suppose we can, what would be the algorithm to find L and U ?

Question (3)
Is the algorithm in question (2) stable?

Existence of LU-Decomposition

LU decomposition exists when all leading principal minors of the $\mathrm{n} \times \mathrm{n}$ matrix A are nonsingular.

$$
\text { i.e. } A^{(k)}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & \ddots & \vdots \\
a_{k 1} & \cdots & a_{k k}
\end{array}\right), k=1 \sim n .
$$

This is difficult to check in real computation.

Every strictly diagonally dominant matrix is nonsingular and has an LU-factorization.

Strictly diagonal-dominant matrix $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$, for all i
Proof: Consider

$$
A=\left[\begin{array}{ll}
\alpha & \omega^{T} \\
v & C
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
\beta & \mathrm{I}
\end{array}\right]\left[\begin{array}{ll}
\alpha & \gamma \\
0 & \delta
\end{array}\right] \Rightarrow\left\{\begin{array}{c}
\gamma=\omega^{T} \\
\beta \alpha=v \Rightarrow \beta=\frac{v}{\alpha} \\
\delta=C-\beta \gamma=C-\frac{\omega^{T} v}{\alpha}
\end{array}\right.
$$

$$
\Rightarrow A=\left[\begin{array}{ll}
1 & 0 \\
\frac{v}{\alpha} & \mathrm{I}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & C-\frac{v \omega^{T}}{\alpha}
\end{array}\right]\left[\begin{array}{cc}
\alpha & \omega^{T} \\
0 & \mathrm{I}
\end{array}\right]}_{\substack{\alpha \\
\\
\alpha \\
\omega^{T} \\
0 \\
0 \\
0 \\
-\frac{v \sigma^{T}}{\alpha}}}
$$

If one can show $B=C-\frac{\omega^{T} v}{\alpha}$ is diagonally dominant, when
A and C are diagnoally dominant then, by assumption of induction, we have $B=\tilde{L} \tilde{U}$

$$
\Rightarrow A=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
\frac{v}{\alpha} & \mathrm{I}
\end{array}\right]}_{L} \cdot \tilde{L} \cdot \underbrace{\tilde{U} \cdot \underbrace{\left[\begin{array}{cc}
\alpha & \omega^{T} \\
0 & \mathrm{I}
\end{array}\right]} \Rightarrow \text { By math induction, }, \text {, } \mathrm{C}}_{U} \text {, }
$$

A has a $L-U$ factorization. Finally, since

$$
\begin{aligned}
\sum_{\substack{j=1 \\
i \neq j}}^{n-1}\left|b_{i j}\right| & =\sum_{\substack{j=1 \\
i \neq j}}^{n-1}\left|c_{i j}-\frac{v_{i} \omega_{j}}{\alpha}\right| \leq \sum_{\substack{j=1 \\
i \neq j}}^{n-1}\left|c_{i j}\right|+\left|\frac{v_{i}}{\alpha}\right| \sum_{\substack{j=1 \\
i \neq j}}^{n-1}\left|\omega_{j}\right| \\
& <\left|c_{i i}\right|-\left|v_{i}\right|+\left|\frac{v_{i}}{\alpha}\right|(\underbrace{\sum_{j=1}^{n-1}\left|\omega_{j}\right|}_{<|\alpha|}-\left|\omega_{i}\right|)<\left|c_{i i}\right|-\frac{\left|v_{i}\right|\left|\omega_{i}\right|}{\alpha} \\
& \leq\left|c_{i i}-\frac{v_{i} \omega_{i}}{\alpha}\right|=\left|b_{i i}\right|
\end{aligned}
$$

Hence, B is strictly diagnoally dominant.

Remark:

- If A is irreducibly, diagonally dominant with strictly inequality holds for at least one row, then A is nonsingular and has a LU factorization.
(assuming the strict dominant inequality. holds at first row [α, ω^{\top}], clearly, the above argument still holds.)
- LU factorization is good for multiple right hand sides.

- LU uniqueness:

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}=\hat{\boldsymbol{L}} \hat{\boldsymbol{U}}$, then $\hat{L}^{-1} L=\hat{\boldsymbol{U}} \boldsymbol{U}^{-1}=\boldsymbol{D}$ is both lower and upper triangular, hence diagonal
- If both L and \hat{L} are unit lower triangular, then D must be identity matrix, so $L=\hat{L}$ and $U=\hat{U}$
- Uniqueness is made explicit in LDU factorization $P A=L D U$, with L unit lower triangular, U unit upper triangular, and D diagonal

LU Algorithm

Computation cost

For $k=1: n$,

$$
\ell_{k k} u_{k k}=a_{k k}-\sum_{m=1}^{k-1} \ell_{k m} u_{m k}
$$

$$
\text { For } j=k+1: n,
$$

$$
u_{k j}=\underbrace{\left(a_{k j}-\sum_{m=1}^{k-1} \ell_{k m} u_{m j}\right) / \ell_{k k}}_{2 \mathrm{k}-1 \text { operations }}
$$

end.
For $i=k+1: n$,

$$
\ell_{i k}=\underbrace{\left(a_{i k}-\sum_{m=1}^{k-1} \ell_{i m} u_{m j}\right) / u_{k k}}_{\substack{(\mathrm{k}-1)+(\mathrm{k}-2)+1+1 \\ \text { operations }}}
$$

end

Remark:

- $O\left(n^{3}\right)$ computational cost is too expensive.
- Possible halt when $l_{k k}$ or $u_{k k}=0$, pivoting strategy is needed.

Consider $\mathrm{A}=\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ \frac{1}{\varepsilon} & 1\end{array}\right]\left[\begin{array}{cc}\varepsilon & 1 \\ 0 & 1-\frac{1}{\varepsilon}\end{array}\right]=L \cdot U$. When overflow,
$L \cdot U \approx\left[\begin{array}{cc}1 & 0 \\ \frac{1}{\varepsilon} & 1\end{array}\right]\left[\begin{array}{cc}\varepsilon & 1 \\ 0 & -\frac{1}{\varepsilon}\end{array}\right]=\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & 0\end{array}\right]=\hat{A}$, one has $\|E\|=\|A-\hat{A}\|=O(1)$,
according to the backward error estimation

$$
\frac{\|\Delta x\|}{\|x\|} \approx O\left(\frac{\|E\|}{\|A\|}\right) \approx O(1)
$$

The solution is unreliable with about 100% relative error
exercise: check the estimate by solving $\mathrm{Ax}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\hat{A} \hat{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$,
and computing the error.
Pivoting strategy: largest entries should be ordered first $A x=b \Rightarrow P A x=P b \Rightarrow A_{p} x=b_{p}$. Consider
$A_{p}=\underbrace{\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]}_{P} \underbrace{\left[\begin{array}{ll}\varepsilon & 1 \\ 1 & 1\end{array}\right]}_{A}=\left[\begin{array}{ll}1 & 1 \\ \varepsilon & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ \varepsilon & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 0 & 1-\varepsilon\end{array}\right]$.
Even when underflow occurs in evaluating $1-\varepsilon$,
$\hat{A}_{p}=\left[\begin{array}{ll}1 & 0 \\ \varepsilon & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ \varepsilon & 1+\varepsilon\end{array}\right] \Rightarrow\left\|A_{p}-\hat{A}_{p}\right\|=O(\varepsilon)$.
So, the solution from the pivoted system is reliable.

Example:

(Hydraulic network) Let us consider the hydraulic network shown in the right figure, which is fed by a reservoir of water at constant pressure $p r=10 \mathrm{bar}$. In this problem, pressure values refer to the difference between the real pressure a the atmospheric one.

Fig. 5.1. The pipeline network of Problem 5.1

For the j-th pipeline, the following relationship holds between the flowrate $Q j$ and the pressure gap $\Delta p j$ at pipe-ends: $Q j=k L \Delta p j$, where k is the hydraulic resistance and L is the length of the pipeline. We assume that water flows from the outlets at atmospheric pressure, which is set to 0 bar. What is the pressure values at each internal node 1, 2, 3, 4 ?

| pipeline | k | L | pipeline | k | L | pipeline | k | L |
| :---: | ---: | ---: | :---: | ---: | ---: | :---: | :---: | ---: | ---: |
| 1 | 0.01 | 20 | 2 | 0.005 | 10 | 3 | 0.005 | 14 |
| 4 | 0.005 | 10 | 5 | 0.005 | 10 | 6 | 0.002 | 8 |
| 7 | 0.002 | 8 | 8 | 0.002 | 8 | 9 | 0.005 | 10 |
| 10 | 0.002 | 8 | | | | | | |

Answer

$$
\begin{aligned}
& Q_{2}+Q_{3}+Q_{4}=Q_{1} \quad \Longrightarrow k_{2} L_{2}\left(P_{2}-P_{1}\right)+k_{3} L_{3}\left(P_{4}-P_{1}\right)+k_{4} L_{4}\left(P_{3}-P_{1}\right)=k_{1} L_{1}\left(P_{1}-10\right) \\
& Q_{9}+Q_{10}=Q_{2} \\
& Q_{9}+Q_{3}+Q_{5}=Q_{7}+Q_{8} \\
& Q_{5}+Q_{6}=Q_{4} \\
& \begin{array}{l}
0.005 \times 10 \times\left(P_{2}-P_{1}\right)+0.005 \times 14 \times\left(P_{4}-P_{1}\right)+0.005 \times 10 \times\left(P_{3}-P_{1}\right)= \\
0.01 \times 20 \times\left(P_{1}-10\right)
\end{array} \\
& \mathrm{A}=\left[\begin{array}{rrrr}
-0.37 P_{1}+0.05 P_{2}+0.05 P_{3}+0.07 P_{4}=-2 \\
\hline 0.050 & -0.050 & 0.050 & 0.070 \\
0.050 & 0 & 0 & 0.050 \\
0.070 & 0.050 & 0.116 & 0.050 \\
0.050
\end{array}\right], \mathrm{b}=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Rank one updating

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$
\left(A-u v^{T}\right)^{-1}=A^{-1}+A^{-1} u\left(1-v^{T} A^{-1} u\right)^{-1} v^{T} A^{-1}
$$

where u and v are n-vectors

- Evaluation of formula requires $\mathcal{O}\left(n^{2}\right)$ work (for matrix-vector multiplications) rather than $\mathcal{O}\left(n^{3}\right)$ work required for inversion
- To solve linear system $\left(A-u v^{T}\right) x=b$ with new matrix, use Sherman-Morrison formula to obtain

$$
\begin{aligned}
\boldsymbol{x} & =\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1} \boldsymbol{b} \\
& =\boldsymbol{A}^{-1} \boldsymbol{b}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

which can be implemented by following steps

- Solve $A z=u$ for z, so $z=A^{-1} u$
- Solve $A y=b$ for y, so $y=A^{-1} b$
- Compute $x=y+\left(\left(\boldsymbol{v}^{T} \boldsymbol{y}\right) /\left(1-\boldsymbol{v}^{T} \boldsymbol{z}\right)\right) \boldsymbol{z}$
- If A is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}\left(n^{2}\right)$ work and no explicit inverses

Rank m update

Sherman-Morrison-Woodbury Formula

$\left(\mathrm{A}+\mathrm{UV}^{\mathrm{T}}\right)^{-1}=A^{-1}-A^{-1} U\left(I+V^{T} A^{-1} U\right)^{-1} V^{T} A^{-1}$ where U and V are $n \times m$ matrices, $n \gg m$.

Exercise:

Use the $L U$ algorithm to solve the equation $\left[\begin{array}{cccc}4 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
Use rank one updating to solve the equation $\left[\begin{array}{cccc}4 & -1 & 0 & -1 \\ -1 & 4 & -1 & 0 \\ 0 & -1 & 4 & -1 \\ -1 & 0 & -1 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$

Possible fill-in in LU might give high storage cost :
Node reordering algorithm can improve !!! A classical algorithm is the Cuthill
Mckee reordering

30366 non-zero elements

Breadth First Search


```
BFS from node A:
Level 0: A
Level 1: B, C;
Level 2: E, D, H;
Level 3: I, K, E, F, G, H.
```

Algorithm BFS (G, v) - by level sets -

- Initialize $S=\{v\}$, seen $=1$; Mark v;
- While seen $<n$ Do
$-S_{\text {new }}=\emptyset$;
- For each node v in S do

For each unmarked w in $\operatorname{adj}(v)$ do
Add w to $S_{\text {new }}$;
Mark w;
seen + +;
$-S:=S_{\text {new }}$

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level, nodes are ordered by increasing degree

Example

Level	Nodes	Deg.	Order
0	A	2	A
1	B, C	4,3	C, B
2	D, E, F	$3,4,2$	F, D, E
3	G	2	G

ALGORITHM : 1. Cuthill Mc Kee ordering

0 . Find an intial node for the traversal

1. Initialize $S=\{v\}$, seen $=1, \pi($ seen $)=v$; Mark v;
2. While seen $<n$ Do
3. $\quad S_{\text {new }}=\emptyset$;
4. For each node v, going from lowest to highest degree, Do:
5.

$$
\pi(++ \text { seen })=v ;
$$

6.

For each unmarked w in adj(v) do
7.
8.

Add w to $S_{\text {new }}$;
Mark w;
9. EndDo
10.

$$
S:=S_{n e w}
$$

11.

EndDo

12. EndWhile

Reverse Cuthill Mckee : reverse the Cuthill-Mckee order

After reverse Cuthill_Mckee

There are other reordering algorithm available such as column count and minimal degree reordering, etc.

24059 nonzero in LU

Time to complete Cholesky factorization

